Monday, February 22, 2016

Intermediate Algebra, Chapter 4, 4.2, Section 4.2, Problem 46

Solve each system x3y+7z+w=112x+4y+6z3w=33x+2y+z+2w=194x+y3z+w=22 by expressing the solution in the form (x,y,z,w).


3x9y+21z+3w=333× Equation 12x+4y+6z3w=3Equation 2




5x5y+27z3w=30Add; New equation 2



2x+6y14z2w=222× Equation 13x+2y+z+2w=19Equation 3



x+8y13z+2w=3Add; New equation 3



x+3y7zw=111× Equation 14x+y3z+w=22Equation 4



3x+4y10z+w=11Add; New Equation 4



65x65y+351z=39013× New Equation 227x+216y315z=8127× New Equation 3



92x+151y351z=309Add; New Equation 3



50x50y+270z=30010× New Equation 281x+108y270z=29727× New Equation 4



131x+58y270z=597Add; New Equation 4



92x+151y=309Equation 3131x+58y=597Equation 4



5336x8758y=1792258× Equation 319781x+8758y=90147151× Equation 4



14445x+8758y=72225Addx=5Divide each side by 14445



92(5)+151y=309Substitute x=5 in New Equation 3460+151y=309Multiply151y=151Subtract each side by 460y=1Divide each side by 151




5+8(1)13z=3Substitute x=5 and y=1 in Equation 15813z=3Multiply313z=0Combine like terms13z=2Add each side by 3z=0Divide each side by 13



53(1)+7(0)+w=11Substitute x=5,y=1 and z=0 in Equation 15+3+0+w=11Multiply8+w=11Combine like termsw=3Subtract each side by 8


The solution set is {(5,1,0,3)}.

No comments:

Post a Comment