Solve each system x−3y+7z+w=112x+4y+6z−3w=−33x+2y+z+2w=194x+y−3z+w=22 by expressing the solution in the form (x,y,z,w).
3x−9y+21z+3w=333× Equation 12x+4y+6z−3w=−3Equation 2
5x−5y+27z−3w=30Add; New equation 2
−2x+6y−14z−2w=−22−2× Equation 13x+2y+z+2w=19Equation 3
x+8y−13z+2w=−3Add; New equation 3
−x+3y−7z−w=−11−1× Equation 14x+y−3z+w=22Equation 4
3x+4y−10z+w=11Add; New Equation 4
65x−65y+351z=39013× New Equation 227x+216y−315z=−8127× New Equation 3
92x+151y−351z=309Add; New Equation 3
50x−50y+270z=30010× New Equation 281x+108y−270z=29727× New Equation 4
131x+58y−270z=597Add; New Equation 4
92x+151y=309Equation 3131x+58y=597Equation 4
−5336x−8758y=−17922−58× Equation 319781x+8758y=90147151× Equation 4
14445x+8758y=72225Addx=5Divide each side by 14445
92(5)+151y=309Substitute x=5 in New Equation 3460+151y=309Multiply151y=−151Subtract each side by 460y=−1Divide each side by 151
5+8(−1)−13z=−3Substitute x=5 and y=−1 in Equation 15−8−13z=−3Multiply−3−13z=0Combine like terms−13z=2Add each side by 3z=0Divide each side by −13
5−3(−1)+7(0)+w=11Substitute x=5,y=−1 and z=0 in Equation 15+3+0+w=11Multiply8+w=11Combine like termsw=3Subtract each side by 8
The solution set is {(5,−1,0,3)}.
No comments:
Post a Comment