Illustrate the solution set $\displaystyle 3x + y \geq 6$
$
\begin{equation}
\begin{aligned}
3x + y &\geq 6
&& \text{Solve the inequality for } y \\
\\
y &\geq -3x + 6
&& \text{Subtract $-3x$ from each side}
\end{aligned}
\end{equation}
$
To graph the inequality, we first find the intercepts of the line $\displaystyle y = -3x + 6$.
In this case, the $x$-intercept (set $y = 0$) is $\left( 2, 0 \right)$
$
\begin{equation}
\begin{aligned}
0 &= -3x + 6 \\
\\
3x &= 6 \\
\\
x &= 2
\end{aligned}
\end{equation}
$
And the $y$-intercept (set $x = 0$) is $(0, 6)$
$
\begin{equation}
\begin{aligned}
y &=-3(0) + 6 \\
\\
y &= 6
\end{aligned}
\end{equation}
$
So the graph is
Graph is $y = -3x + 6 $ as a solid line. Shade the upper half of the plane.
No comments:
Post a Comment