Tuesday, January 12, 2016

Single Variable Calculus, Chapter 3, 3.5, Section 3.5, Problem 76

Suppose that the equation of motion of a particle is given by s=Acos(ωt+δ), the particle is said to undergo simple harmonic motion.

a.) Determine the velocity of the particle at time t.

Recall that velocity = s(t) so...


velocity =s(t)=Add(ωt+δ)[cos(ωt+δ)]ddt(wt+δ)velocity =s(t)=A(sin(ωt+δ))(ωt+δ)velocity =s(t)=Aωsin(ω+δ)



b.) At what time is the velocity 0?

The velocity is zero when...


0=\cancelAωsin(ωt+δ)ωt+δ=sin1[0]ωt+δ=nπ;where nπ corresponds to succeeding periods and n is an integerωt=nπδt=nπδω;where n is any integer

No comments:

Post a Comment