a.) Determine what is wrong in the equation $\displaystyle \frac{x^2+x-6}{x-2} = x+3$
The function in the left side is defined for all values of $x$ except for $x=2$. However, the function on the right side is
on every values of $x$
b.) Prove that the equations $\lim\limits_{x \rightarrow 2} \displaystyle \frac{x^2+x-6}{x-2} = \lim\limits_{x \rightarrow 2} (x+3)$ is correct.
$
\begin{equation}
\begin{aligned}
\lim\limits_{x \rightarrow 2} \displaystyle \frac{x^2+x-6}{x-2} & = \lim\limits_{x \rightarrow 2} \displaystyle \frac{(x+3)\cancel{(x-2)}}{\cancel{x-2}} & & \text{(By Factoring)}\\
\lim\limits_{x \rightarrow 2} \displaystyle \frac{x^2+x-6}{x-2} & = \lim\limits_{x \rightarrow 2} \displaystyle (x+3)
\end{aligned}
\end{equation}
$
No comments:
Post a Comment