Determine the $\displaystyle \lim_{x \to \infty} \left( xe^{\frac{1}{x}} - x \right)$. Use L'Hospital's Rule where appropriate. Use some Elementary method if posible. If L'Hospitals Rule doesn't apply. Explain why.
$\displaystyle \lim_{x \to \infty} \left( xe^{\frac{1}{x}} - x \right) = \lim_{x \to \infty} x\left( e^{\frac{1}{x}} - 1 \right) = \lim_{x \to \infty} \frac{\left(e^{\frac{1}{x}} - 1 \right)}{\frac{1}{x}}$
By applying L'Hospital's Rule...
$
\begin{equation}
\begin{aligned}
\lim_{x \to \infty} \frac{\left(e^{\frac{1}{x}} - 1 \right)}{\frac{1}{x}} &= \lim_{x \to \infty} \frac{e^{\frac{1}{x}}\left( \frac{-1}{x^2} \right) }{\left( \frac{-1}{x^2} \right)}\\\
\\
&= \lim_{x \to \infty} e^{\frac{1}{x}}\\
\\
&= e^{\frac{1}{\infty}}\\
\\
&= e^0\\
\\
&= 1
\end{aligned}
\end{equation}
$
No comments:
Post a Comment