Determine the critical numbers of the function $f(x) = x^3 + x^2 + x$
$
\begin{equation}
\begin{aligned}
f'(x) =& \frac{d}{dx} (x^3) + \frac{d}{dx} (x^2) + \frac{d}{dx} (x)
\\
\\
f'(x) =& 3x^2 + 2x + 1
\end{aligned}
\end{equation}
$
Solving for critical numbers
$
\begin{equation}
\begin{aligned}
f'(x) =& 0
\\
\\
0 =& 3x^2 + 2x + 1
\end{aligned}
\end{equation}
$
Using Quadratic Equation to solve for $x$
$
\begin{equation}
\begin{aligned}
x =& \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, \quad ax^2 + bx + c = 0
\\
\\
x =& \frac{-2 \pm \sqrt{(2)^2 - (4)(3)(1)}}{2(3)}
\\
\\
x =& \frac{-2 \pm \sqrt{4 - 12}}{6}
\\
\\
x =& \frac{-2 \pm \sqrt{-8}}{6}
\end{aligned}
\end{equation}
$
The derivative of the function has no real solution.
Therefore, there are no critical numbers.
No comments:
Post a Comment