a.) Illustrate the graph of the function f(x)=x|x|.
b.) For what values of x is f differentiable.
c.) Find a formula for f′
a.)
b.) Using the definition of absolute value,
f(x)={x(x)ifx≥0x(−x)ifx<0⟹f(x)={x2ifx≥0−x2ifx<0
Let's Check if the function is differentiable at x=0
By definition,
f′−(x)=limh→0−f(x+h)−f(x)h and f′+(x)=limh→0+f(x+h)−f(x)h
For Right Hand,
f′+(x)=limh→0+(x+h)2−x2hf′+(x)=limh→0+\cancelx2+2xh+h2−\cancelx2hf′+(x)=limh→0+\cancelh(2x+h)\cancelhf′+(x)=limh→0+2x+hf′+(x)=2x+0f′+(x)=2xf′+(0)=2(0)=0f′+(0)=0
For Left Hand,
f′−(x)=limh→0−−(x+h)2−(−x2)hf′−(x)=limh→0−−\cancelx2−2xh−h2+\cancelx2hf′−(x)=limh→0−\cancelh(−2x−h)\cancelhf′−(x)=limh→0−(−2x−h)f′−(x)=−2x−0f′−(x)=−2xf′−(0)=−2(0)=0
The derivative from the right hand is equal to the derivative of left hand. f′+(0)=f′−(0)
Therefore,
The function f(x)=x|x| is differentiable everywhere.
No comments:
Post a Comment