Sunday, December 6, 2015

Single Variable Calculus, Chapter 3, 3.2, Section 3.2, Problem 51

a.) Illustrate the graph of the function f(x)=x|x|.
b.) For what values of x is f differentiable.
c.) Find a formula for f

a.)



b.) Using the definition of absolute value,

f(x)={x(x)ifx0x(x)ifx<0f(x)={x2ifx0x2ifx<0


Let's Check if the function is differentiable at x=0
By definition,
f(x)=limh0f(x+h)f(x)h and f+(x)=limh0+f(x+h)f(x)h

For Right Hand,

f+(x)=limh0+(x+h)2x2hf+(x)=limh0+\cancelx2+2xh+h2\cancelx2hf+(x)=limh0+\cancelh(2x+h)\cancelhf+(x)=limh0+2x+hf+(x)=2x+0f+(x)=2xf+(0)=2(0)=0f+(0)=0


For Left Hand,


f(x)=limh0(x+h)2(x2)hf(x)=limh0\cancelx22xhh2+\cancelx2hf(x)=limh0\cancelh(2xh)\cancelhf(x)=limh0(2xh)f(x)=2x0f(x)=2xf(0)=2(0)=0


The derivative from the right hand is equal to the derivative of left hand. f+(0)=f(0)

Therefore,
The function f(x)=x|x| is differentiable everywhere.

No comments:

Post a Comment