Saturday, December 12, 2015

int_0^oo x^(n)e^(-x) dx Use mathematical induction to verify that the following integral converges for any positive integer n

Basis (n=1)
We will use integration by parts
int u dv=uv-int v du
int_0^infty xe^-x dx=|[u=x,dv=e^-x dx],[du=dx,v=-e^-x]|=
-xe^-x|_0^infty+int_0^infty e^-x dx=(-xe^-x-e^-x)|_0^infty=
lim_(x to infty)(-xe^-x-e^-x)-(0-1)=
In order to calculate the above integral we shall use L'Hospital's rule:
lim_(x to a)(f(x))/(f(x))=lim_(x to a) (f'(x))/(g'(x))
 First we rewrite the limit so we could use L'hospital's rule.
lim_(x to infty)-xe^-x=lim_(x to infty)-x/e^x=
Now we differentiate.
lim_(x to infty)-1/e^x=0
Let us now return to calculating the integral.
0-0-0+1=1
As we can see the integral converges to 1.
 
Let us assume that integral int_0^infty x^n e^-x dx converges for all n leq k.
Step (n=k+1)
We will once again use integration by parts.
int_0^infty x^(k+1)e^-x dx=|[u=x^(k+1),dv=e^-x dx],[du=(k+1)x^k dx,v=-e^-x]|=
-x^(k+1)e^-x|_0^infty+(k+1)int_0^infty x^k e^-x dx
From the assumption we know that the above integral converges, therefore we only need to show that x^(k+1)e^-x|_0^infty also converges. 
x^(k+1)e^-x|_0^infty=lim_(x to infty)x^(k+1)e^-x-0=lim_(x to infty) x^(k+1)/e^x
If we now apply L'Hospital's rule k+1 times, we will get
lim_(x to infty) ((k+1)!)/e^x=0
Thus, we have shown that the integral converges for n=k+1 concluding the induction.
QED  
The image below shows graphs of the function under integral for different values of n. We can see that x-axis is asymptote for all of the graphs meaning that the function converges to zero for all n. The only difference is that the convergence gets a little bit slower as n increases and so the area under the graph increases as well. However, the area remains finite for all n in NN, as we have already concluded.
https://en.wikipedia.org/wiki/Integration_by_parts

https://en.wikipedia.org/wiki/Mathematical_induction

No comments:

Post a Comment