Thursday, November 26, 2015

Single Variable Calculus, Chapter 7, 7.8, Section 7.8, Problem 4

Suppose that
limxaf(x)=0limxalimxah(x)=1
limxap(x)=limxaq(x)=

Which of the following limits are indeterminate form? Evaluate the limit if possible, for those that are not an indefinite form.

a.) limxa[f(x)]g(x)
b.) limxa[f(x)]p(x)
c.) limxa[h(x)]p(x)
d.) limxa[p(x)]f(x)
e.) limxa[p(x)]q(x)
f.) limxaq(x)p(x)


a. ) limxa[f(x)]g(x)=limxa[f(x)]limxag(x)=00(Indeterminate)b. ) limxa[f(x)]p(x)=limxa[f(x)]limxap(x)=0=0c. ) limxa[h(x)]p(x)=limxa[h(x)]limxap(x)=1(Indeterminate)d. ) limxa[p(x)]f(x)=limxa[p(x)]limxaf(x)=0(Indeterminate)e. ) limxa[p(x)]q(x)=limxa[p(x)]limxaq(x)==e. ) limxaq(x)p(x)=limxa[p(x)]1q(x)=limxa[p(x)]1limxaq(x)=1=0(Indeterminate)

No comments:

Post a Comment