Saturday, November 21, 2015

Single Variable Calculus, Chapter 5, Review Exercises, Section Review Exercises, Problem 34

Determine the derivative of the function F(x)=1xt+sintdt using the properties of integral.
Using the properties of integral
abf(x)dx=baf(x)dx

Then,
F(x)=1xt+sintdt=x11+sintdt
Since F(t)=t+sint, using the first fundamental theorem of calculus
g(x)=xaf(t)dt, then
F(x)=x+sinx

No comments:

Post a Comment