Determine the derivative of the function F(x)=∫1x√t+sintdt using the properties of integral.
Using the properties of integral
∫abf(x)dx=−∫baf(x)dx
Then,
F(x)=∫1x√t+sintdt=−∫x1√1+sintdt
Since F(t)=−√t+sint, using the first fundamental theorem of calculus
g(x)=∫xaf(t)dt, then
F′(x)=−√x+sinx
No comments:
Post a Comment