How fast is the area of the square increasing when the radius is 30m?
Given: $\displaystyle \frac{dx}{dt} = 6 cm/s$
Required: $\displaystyle \frac{dA}{dt}$ when $\displaystyle \frac{dr}{dt}$
Solution: Let $A = x^2$ be the area of square where $x$ = side of the square
$\displaystyle \frac{dA}{dt} = \frac{dA}{dx} \left( \frac{dx}{dt} \right) = 2 x \frac{dx}{dt} $
$\displaystyle \frac{dA}{dt} = 2x \frac{dx}{dt}$
To get the value of $x$, we use the given area to get $x$
$
\begin{equation}
\begin{aligned}
A =& x^2
\\
\\
x =& \sqrt{A} ; A = 16
\\
\\
\frac{dA}{dt} =& 2 (4)(6)
\\
\\
\end{aligned}
\end{equation}
$
$\fbox{$\large \frac{dA}{dt} = 48 cm^2 /s $}$
No comments:
Post a Comment