Sunday, November 15, 2015

Single Variable Calculus, Chapter 3, 3.4, Section 3.4, Problem 19

Show that ddx(cotx)=csc2x

Get the reciprocal of cotx

cotcosxsinx

Use Quotient Rule


ddx(cotx)=sinxddx(cosx)[(cosx)ddx(sinx)](sinx)2ddx(cotx)=(sinx)(sinx)(cosx)(cosx)sin2xSimplify the equationddx(cotx)=sin2xcos2xsin2xFactor out 1ddx(cotx)=(sin2x+cos2x)sin2xGet the equivalent identitiesddx(cotx)=1sin2xGet the Trigonometric Identityddx(cotx)=csc2x

No comments:

Post a Comment