Saturday, November 28, 2015

College Algebra, Chapter 4, 4.6, Section 4.6, Problem 78

Graph the rational function y=x43x3+x23x+3x23x and find all vertical asymptotes, x and y intercepts, and local extrema. Then use long division to find a polynomial that has the same end behavior that has the same end behavior as the rational function, and graph both functions in a sufficiently large viewing rectangle to verify that the end behaviors of the polynomial and the rational function are the same.







Based from the graph, the vertical asymptotes are the lines x=0 and x=3. Also, the x intercept of the function are approximately 0.75 and 2.85 but the y intercept does not exist. The estimated local maximum 5 occurs when x is approximately 2.6. Also, the local minima 3 and 14.9 occurs when x is approximately 0.75 and 3.25 respectively.

Then, by using Long Division,







Thus, y=x43x3+x23x+3x23x=x2+1+3x23x


Therefore, the polynomial f(x)=x2+1 has the same end behavior with the given rational function. Then, their graph is

No comments:

Post a Comment