Thursday, October 22, 2015

Single Variable Calculus, Chapter 3, 3.4, Section 3.4, Problem 49

Differentiate each Trigonometric Identity to obtain new identity.
(a) tanx=sinxcosx(b) secx=1cosx(c) sinx+cosx=1+cotxcscx

a.) tanx=sinxcosxddx(tanx)=cosxddxsinxsinxddxcosx(cosx)2Applying quotient rulesec2x=cosx(cosx)sinx(sinx)(cosx)2sec2x=cos2x+sin2x(cosx)2Applying the Pythagorean Identity for the trigonometric function sin2x+cos2x=1sec2x=1(cosx)2Applying the identity secx=1cosxsec2x=sec2x



b.) secx=1cosxddxsecx=cosxddx(1)1ddxcosx(cosx)2Applying quotient rulesecxtanx=01(sinx)(cosx)2secxtanx=sinx(cosx)2Break down two partssecxtanx=sinxcosx(1cosx)secxtanx=secxtanx



c.) sinx+cosx=1+cotxcscxddxsinx+ddxcosx=cscxddx(1+cotx)(1+cotx)ddxcscx(cscx)2cosxsinx=cscx(csc2x)(1+cotx)(cscxcotx)(cscx)2cosxsinx=csc3x+cscxcotx+cscxcot2x(cscx)2cosxsinx=csc3x+cscxcosxsinx+cscxcos2xsin2x(cscx)2cosxsinx=csc3x+csc2xcosx+csc3xcosx(cscx)2cosxsinx=\cancelcsc2x(cscx+cosx+cosxcscx)\cancel(cscx)2cosxsinx=1sinx+cosx+cos2xsinxcosxsinx=cos2x1sinx+cosx(cosx1=sin2x, Using Pythagorean Identity)cosxsinx=sin\cancel2x\cancelsinx+cosxcosxsinx=cosxsinx

No comments:

Post a Comment