Differentiate each Trigonometric Identity to obtain new identity.
(a) tanx=sinxcosx(b) secx=1cosx(c) sinx+cosx=1+cotxcscx
a.) tanx=sinxcosxddx(tanx)=cosxddxsinx−sinxddxcosx(cosx)2Applying quotient rulesec2x=cosx(cosx)−sinx(−sinx)(cosx)2sec2x=cos2x+sin2x(cosx)2Applying the Pythagorean Identity for the trigonometric function sin2x+cos2x=1sec2x=1(cosx)2Applying the identity secx=1cosxsec2x=sec2x
b.) secx=1cosxddxsecx=cosxddx(1)−1ddxcosx(cosx)2Applying quotient rulesecxtanx=0−1(−sinx)(cosx)2secxtanx=sinx(cosx)2Break down two partssecxtanx=sinxcosx⋅(1cosx)secxtanx=secxtanx
c.) sinx+cosx=1+cotxcscxddxsinx+ddxcosx=cscxddx(1+cotx)−(1+cotx)ddxcscx(cscx)2cosx−sinx=cscx(−csc2x)−(1+cotx)(−cscxcotx)(cscx)2cosx−sinx=−csc3x+cscxcotx+cscxcot2x(cscx)2cosx−sinx=−csc3x+cscxcosxsinx+cscxcos2xsin2x(cscx)2cosx−sinx=−csc3x+csc2xcosx+csc3xcosx(cscx)2cosx−sinx=\cancelcsc2x(−cscx+cosx+cosxcscx)\cancel(cscx)2cosx−sinx=1sinx+cosx+cos2xsinxcosx−sinx=cos2x−1sinx+cosx(cosx−1=−sin2x, Using Pythagorean Identity)cosx−sinx=−sin\cancel2x\cancelsinx+cosxcosx−sinx=cosx−sinx
No comments:
Post a Comment