Determine the integral ∫cos(πx)cos(4πx)dx
Let u=πx, then du=πdx, so dx=duπ. Thus
∫cos(πx)cos(4πx)dx=∫cosucos4u⋅duπApply Trigonometric Identity cosAcosB=12[cos(A−B)+cos(A+B)]∫cos(πx)cos(4πx)dx=1π∫12[cos(u−4u)+cos(u+4u)]du∫cos(πx)cos(4πx)dx=12π∫[cos(−3u)+cos(5u)]duApply Even-Odd Identity cos(−u)=cos(u)∫cos(πx)cos(4πx)dx=12π∫[cos(3u)+cos(5u)]du∫cos(πx)cos(4πx)dx=12π∫[cos(3u)du+12π∫cos(5u)du
For cos(3u), let v=3u, then dv=3du, so du=dv3 and for cos(5u), let w=5u, then dw=5du, so du=dw5. Therefore,
12π∫[cos(3u)du+12π∫cos(5u)du=12π∫cosv⋅dv3+12π∫cosw⋅dw512π∫[cos(3u)du+12π∫cos(5u)du=16π∫cosvdv+110π∫coswdw12π∫[cos(3u)du+12π∫cos(5u)du=16πsinv+110πsinw+c12π∫[cos(3u)du+12π∫cos(5u)du=sin3u6π+sin5u10π+c12π∫[cos(3u)du+12π∫cos(5u)du=sin(3πx)6π+sin(5πx)10π+c
No comments:
Post a Comment