Monday, September 28, 2015

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 44

Determine the integral cos(πx)cos(4πx)dx

Let u=πx, then du=πdx, so dx=duπ. Thus


cos(πx)cos(4πx)dx=cosucos4uduπApply Trigonometric Identity cosAcosB=12[cos(AB)+cos(A+B)]cos(πx)cos(4πx)dx=1π12[cos(u4u)+cos(u+4u)]ducos(πx)cos(4πx)dx=12π[cos(3u)+cos(5u)]duApply Even-Odd Identity cos(u)=cos(u)cos(πx)cos(4πx)dx=12π[cos(3u)+cos(5u)]ducos(πx)cos(4πx)dx=12π[cos(3u)du+12πcos(5u)du


For cos(3u), let v=3u, then dv=3du, so du=dv3 and for cos(5u), let w=5u, then dw=5du, so du=dw5. Therefore,


12π[cos(3u)du+12πcos(5u)du=12πcosvdv3+12πcoswdw512π[cos(3u)du+12πcos(5u)du=16πcosvdv+110πcoswdw12π[cos(3u)du+12πcos(5u)du=16πsinv+110πsinw+c12π[cos(3u)du+12πcos(5u)du=sin3u6π+sin5u10π+c12π[cos(3u)du+12πcos(5u)du=sin(3πx)6π+sin(5πx)10π+c

No comments:

Post a Comment