Find y′ of y=xtany=y−1
ddx(xtany)=ddx(y)−ddx(1)(x)ddx(tany)+(tany)ddx(x)=dydx−0(x)(sec2y)dydx+(tany)(1)=dydxxsec2ydydx+tany=dydxxy′sec2y−y′+tany=y′xy′sec2y−y′=−tanyy′(xsec2y−1)=−tanyy′\cancel(xsec2y−1)\cancelxsec2y−1=−tanyxsec2y−1y′=−tanyxsec2y−1ory′=tany1−xsec2y
No comments:
Post a Comment