Determine the derivative of the function y=[x2+1(1−3x)5]3
y′=ddx[x2+1(1−3x)5]3y′=3[x2+1(1−3x)5]2ddx[x2+(1−3x)5]y′=3[x2+1(1−3x)5]2[ddx(x2)+ddx(1−3x)5]y′=3[x2+1(1−3x)5]2[2x+5(1−3x)4ddx(1−3x)]y′=3[x2+1(1−3x)5]2[2x+5(1−3x)4(−3)]y′=3[x2+1(1−3x)5]2[2x−15(1−3x)4]
No comments:
Post a Comment