Determine the numbers b such that the average value of f(x)=2+6x−3x2 on the interval [0,b] is eqaul to 3.
fave=1b−a∫baf(x)dx3=1b−0∫b0(2+6x−3x2)dx3b=[2x+6x22−3x33]b03b=]2(b)+6(b)22−3(b)33]−[2(0)+6(0)22−3(0)23]3b=2b+3b2−b3b3−3b2+b=0We have,b=0 and b2−3b+1=0By applying Quadratic Formulab=2.6180 and b=0.3820
Therefore, the values of b are..
b=0,b=2.6180 and b=0.3820
No comments:
Post a Comment