Sunday, August 30, 2015

Single Variable Calculus, Chapter 6, 6.5, Section 6.5, Problem 14

Determine the numbers b such that the average value of f(x)=2+6x3x2 on the interval [0,b] is eqaul to 3.


fave=1babaf(x)dx3=1b0b0(2+6x3x2)dx3b=[2x+6x223x33]b03b=]2(b)+6(b)223(b)33][2(0)+6(0)223(0)23]3b=2b+3b2b3b33b2+b=0We have,b=0 and b23b+1=0By applying Quadratic Formulab=2.6180 and b=0.3820


Therefore, the values of b are..

b=0,b=2.6180 and b=0.3820

No comments:

Post a Comment