Suppose the harmonic mean of two numbers is the reciprocal of the average of the reciprocals of the two numbers. Find the harmonic mean of 3 and 5.
Harmonic mean = $\displaystyle \frac{n}{\displaystyle \frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \frac{1}{a_4} + ..... + \frac{1}{a_n}}$ where $n$ is a set of numbers
For the numbers 3 and 5,
$
\begin{equation}
\begin{aligned}
\text{harmonic mean } =& \frac{2}{\displaystyle \frac{1}{3} + \frac{1}{5}}
&& \text{Substitute } n = 2, a = 3 \text{ and } a_2 = 5
\\
\\
\text{harmonic mean } =& \frac{2}{\displaystyle \frac{8}{15}}
&& \text{Get the LCD}
\\
\\
\text{harmonic mean } =& \frac{30}{8}
&& \text{Multiply by its reciprocal}
\\
\\
\text{harmonic mean } =& \frac{15}{4}
&& \text{Simplify}
\end{aligned}
\end{equation}
$
No comments:
Post a Comment