If $|f(x)| \leq g(x)$ for all $x$, where $\lim \limits_{x \to a} g(x) = 0$. Find $\lim \limits_{x \to a} f(x)$.
Using Squeeze Theorem
$\qquad$ $\lim \limits_{x \to a} - g(x) \leq \lim \limits_{x \to a} |f(x)| \leq \lim \limits_{x \to a} g(x)$
We know that
$\qquad$ $\lim \limits_{x \to a} g(x) = 0$
We have
$\qquad$ $- \lim \limits_{x \to a} g(x) \leq \lim \limits_{x \to a} |f(x)| \leq \lim \limits_{x \to a} g(x)$
Or
$\qquad$ $0 \leq \lim \limits_{x \to a} |f(x)| \leq 0$
So,
$\qquad$ $\lim \limits_{x \to a} f(x) = \lim \limits_{x \to a} g(x)$
Therefore,
$\qquad$ $\lim \limits_{x \to a} f(x) = 0$
No comments:
Post a Comment