We need to find (a) $f \circ g$, (b) $g \circ f$, (c) $f \circ f$, and (d) $g \circ g$ and state their domains
$f(x) = x^2 - 1, \qquad g(x) 2x + 1$
$
\begin{equation}
\begin{aligned}
\text{(a)} Â Â f \circ g &= f(g(x))\\
f(2x+1) &= x^2-1 && \text{ Substitute the given values of the function $f(x)$ and $g(x)$ }\\
f(2x+1) &= (2x+1)^2-1 && \text{ Simplify the equation}\\
f(2x+1) &= 4x^2+4x+1-1 && \text{ Combine like terms}\\
f(2x+1) &= 4x^2+4x
\end{aligned}
\end{equation}
$
$\boxed{\text{ The domain of this function is} Â (-\infty,\infty)} $
$
\begin{equation}
\begin{aligned}
\text{(b)} Â Â g \circ f =& g(f(x))\\
g(x^2-1)=& 2x+1 && \text{ Substitute the given function $g(x$) to the value of $x$ of the function $f(x)$}\\
g(x^2-1)=& 2(x^2-1)+1 && \text{ Simplify the equation}\\
g(x^2-1)=& 2x^2-2+1 && \text{ Combine like terms}
\end{aligned}
\end{equation}
$
$ \boxed{g \circ f=2x^2-1}$
$ \boxed{ \text{ The domain of this function is } Â (-\infty,\infty)}$
$
\begin{equation}
\begin{aligned}
\text{(c)} Â Â f \circ f &= f(f(x))\\
f(x^2-1) &= x^2-1 && \text{ Substitute the given function $g(x$) to the value of $x$ of the function $f(x)$}\\
f(x^2-1) &= (x^2-1)^2-1 && \text{ Simplify the equation}\\
f(x^2-1) &= x^4-x^2-x^2+1-1 && \text{ Combine like terms}
\end{aligned}
\end{equation}
$
$\boxed{f \circ f=x^4-2x^2}$
$\boxed{\text{ The domain of this function is } (-\infty,\infty)}$
$
\begin{equation}
\begin{aligned}
\text{(d)} Â Â g \circ g &= g(g(x))\\
g(2x+1) &= 2x+1 && \text{ Substitute the given function $g(x$) to the value of $x$ of the function $f(x)$:}\\
g(2x+1) &= 2(2x+1)+1 && \text{ Simplify the equation}\\
g(2x+1) &= 4x+2+1 && \text{ Combine like terms}\\
\end{aligned}
\end{equation}
$
$\boxed{g \circ g =4x+3}$
$\boxed{\text{ The domain of this function is } (-\infty,\infty)}$
No comments:
Post a Comment