We need to find (a) f∘g, (b) g∘f, (c) f∘f, and (d) g∘g and state their domains
f(x)=x2−1,g(x)2x+1
(a)ÂÂf∘g=f(g(x))f(2x+1)=x2−1 Substitute the given values of the function f(x) and g(x) f(2x+1)=(2x+1)2−1 Simplify the equationf(2x+1)=4x2+4x+1−1 Combine like termsf(2x+1)=4x2+4x
The domain of this function isÂ(−∞,∞)
(b)ÂÂg∘f=g(f(x))g(x2−1)=2x+1 Substitute the given function g(x) to the value of x of the function f(x)g(x2−1)=2(x2−1)+1 Simplify the equationg(x2−1)=2x2−2+1 Combine like terms
g∘f=2x2−1
The domain of this function is Â(−∞,∞)
(c)ÂÂf∘f=f(f(x))f(x2−1)=x2−1 Substitute the given function g(x) to the value of x of the function f(x)f(x2−1)=(x2−1)2−1 Simplify the equationf(x2−1)=x4−x2−x2+1−1 Combine like terms
f∘f=x4−2x2
The domain of this function is (−∞,∞)
(d)ÂÂg∘g=g(g(x))g(2x+1)=2x+1 Substitute the given function g(x) to the value of x of the function f(x):g(2x+1)=2(2x+1)+1 Simplify the equationg(2x+1)=4x+2+1 Combine like terms
g∘g=4x+3
The domain of this function is (−∞,∞)
No comments:
Post a Comment