a. Find the distance between the points $(-2,2)$ and $(1,4)$.
Using the Distance Formula,
$
\begin{equation}
\begin{aligned}
d =& \sqrt{(-2-1)^2 + (2-4)^2}
\\
d =& \sqrt{9+4}
\\
d =& \sqrt{13}
\end{aligned}
\end{equation}
$
b. Find the midpoint of the given points.
Using the Midpoint Formula,
$
\begin{equation}
\begin{aligned}
M = (x,y) =& \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)
\\
\\
=& \left( \frac{-2+1}{2}, \frac{2+4}{2} \right)
\\
\\
=& \left( \frac{-1}{2}, 3 \right)
\end{aligned}
\end{equation}
$
c. Find the slope of the line containing the given points.
Using the Formula for Slope,
$
\begin{equation}
\begin{aligned}
m =& \frac{y_2- y_1}{x_2 - x_1}
\\
\\
=& \frac{4-2}{1-(-2)}
\\
\\
=& \frac{6}{3}
\\
\\
=& 2
\end{aligned}
\end{equation}
$
d. Interpret the slope in part (c).
For every increment of $x$ by 1 unit, $y$ will increase by 2 units.
No comments:
Post a Comment