Thursday, July 23, 2015

College Algebra, Chapter 4, 4.5, Section 4.5, Problem 70

Find all solutions of equation

(a)2x+4i=1(b)x2ix=0(c)x2+2ix1=0(d)ix22x+i=0


a.) 2x+4i=12x=14iSubtract 4ix=14i2Divide by 2



b.) x2ix=0x(xi)=0Factor out xx=0 and xi=0Zero product propertyx=0 and x=iSolve for x


c.) To find the solution for x2+2ix1=0, we use quadratic formula

x=2i±(2i)24(1)(1)2(1)=2i±4i2+42=2i±4+42=2i2=i

Thus, the solution is x=i

d.) To find the solution for ix22x+i=0, we use quadratic formula

x=(2)±(2)24(i)(i)2i=2±44i22i=2±4+42i=2±222i=1±2i

By multiplying the complex conjugate

x=1±2i(ii)=(1±2)(i)i2=(1±2)(i)1=(1±2)(i)

Thus, the complex solutions are x=(1+2)(i) and x=(12)(i)

No comments:

Post a Comment