Find all solutions of equation
(a)2x+4i=1(b)x2−ix=0(c)x2+2ix−1=0(d)ix2−2x+i=0
a.) 2x+4i=12x=1−4iSubtract 4ix=1−4i2Divide by 2
b.) x2−ix=0x(x−i)=0Factor out xx=0 and x−i=0Zero product propertyx=0 and x=iSolve for x
c.) To find the solution for x2+2ix−1=0, we use quadratic formula
x=−2i±√(2i)2−4(1)(−1)2(1)=−2i±√4i2+42=−2i±√−4+42=−2i2=−i
Thus, the solution is x=−i
d.) To find the solution for ix2−2x+i=0, we use quadratic formula
x=−(−2)±√(−2)2−4(i)(i)2i=2±√4−4i22i=2±√4+42i=2±2√22i=1±√2i
By multiplying the complex conjugate
x=1±√2i(−i−i)=(1±√2)(−i)−i2=(1±√2)(−i)1=(1±√2)(−i)
Thus, the complex solutions are x=(1+√2)(−i) and x=(1−√2)(−i)
No comments:
Post a Comment