Integrate int(x^2-2x-1)/[(x-1)^2(x^2+1)]dx
Rewrite the rational function using partial fractions.
(x^2-2x-1)/[(x-1)^2(x^2+1)]=A/(x-1)+B/(x-1)^2+(Cx+D)/(x^2+1)
x^2-2x-1=A(x-1)(x^2+1)+B(x^2+1)+(Cx+D)(x-1)^2
x^2-2x-1=A(x^3-x^2+x-1)+Bx^2+B+(Cx+D)(x^2-2x+1)
x^2-2x-1=Ax^3-Ax^2-Ax-A+Bx^2+B
+ Cx^3-2Cx^2+Cx+Dx^2-2Dx+D
x^2-2x-1=(A+C)x^3+(-A+B-2C+D)x^2
+(A+C-2D)x+(-A+B+D)
Equate coefficients and solve for A, B, C, and D.
0=A+C
A=-C
-2=A+C-2D
-2=-C+C-2D
-2=-2D
D=1
1=-A+B-2C+D
1=C+B-2C+1
0=-1C+B
B=C
-1=-A+B+D
-1=C+B+1
-2=B+B
-2=2B
B=-1
C=-1
A=1
int(x^2-2x-1)/[(x-1)^2(x^2+1)]dx
=int[1/(x-1)]dx-int[1/(x-1)^2]dx+int[(-1x+1)/(x^2+1)]dx
=int[1/(x-1)]dx-int[1/(x-1)^2]dx+int[-x/(x^2+1)]dx+int[1/(x^2+1)]dx
The first integral follows the pattern int(du)/u=ln|u|+C
int[1/(x-1)]dx=ln|x-1|+C
Integrate the second integral using u-substitution.
Let u=x-1
(du)/(dx)=1
du=dx
-int1/(x-1)^2dx
=-intu^-2du
=1/u+C
1/(x-1)+C
Integrate the third integral using u-subsitution.
Let u=x^2+1
(du)/(dx)=2x
(dx)=(du)/(2x)
-intx/(x^2+1)dx
=-int(x)/(u)*(du)/(2x)
=-1/2ln|u|+C
=-1/2ln|x^2+1|+C
The fourth integral matches the pattern
intdx/(x^2+a^2)=(1/a)tan^-1(x/a)+C
int1/(x^2+1)dx
=tan^-1(x)+C
The final answer is:
ln|x-1|+1/(x-1)-1/2ln|x^2+1|+tan^-1(x)+C
No comments:
Post a Comment