Find the derivative of the function y=4√x2+1x2−1, using log differentiation
lny=ln4√x2+1x2−1lny=ln4√x2+14√x2−1lny=ln4√x2+1−ln4√x2−1lny=ln(x2+1)14−ln(x2−1)14lny=14ln(x2+1)−14ln(x2−1)ddxlny=14ddxln(x2+1)−14ddxln(x2−1)1ydydx=14⋅1x2+1ddx(x2+1)−14⋅1x2−1ddx(x2−1)1yy′=14(x2+1)⋅2x−14(x2−1)⋅2xy′y=x2(x2+1)−x2(x2−1)y′=y[x2(x2+1)−x2(x2−1)]y′=4√x2+1x2−1[x2(x2+1)−x2(x2−1)]
No comments:
Post a Comment