Thursday, June 18, 2015

Single Variable Calculus, Chapter 7, 7.4-1, Section 7.4-1, Problem 44

Find the derivative of the function y=4x2+1x21, using log differentiation

lny=ln4x2+1x21lny=ln4x2+14x21lny=ln4x2+1ln4x21lny=ln(x2+1)14ln(x21)14lny=14ln(x2+1)14ln(x21)ddxlny=14ddxln(x2+1)14ddxln(x21)1ydydx=141x2+1ddx(x2+1)141x21ddx(x21)1yy=14(x2+1)2x14(x21)2xyy=x2(x2+1)x2(x21)y=y[x2(x2+1)x2(x21)]y=4x2+1x21[x2(x2+1)x2(x21)]

No comments:

Post a Comment