Find the integrals ∫40(2v+5)(3v−1)dv
∫(2v+5)(3v−1)dv=∫(6v2−2v+15v−5)dv∫(2v+5)(3v−1)dv=∫(6v2+13v−5)dv∫(2v+5)(3v−1)dv=6∫v2dv+13∫vdv−∫5dv∫(2v+5)(3v−1)dv=6(v2+12+1)+13(v1+11+1)−5(v0+10+1)+C∫(2v+5)(3v−1)dv=6(v33)+13(v22)−5v+C∫(2v+5)(3v−1)dv=2v3+13v22−5v+C∫40(2v+5)(3v−1)dv=2(4)3+13(4)22−5(4)+C−[2(0)3+13(0)22−5(0)+C]∫40(2v+5)(3v−1)dv=128+104−20+C−0−0+0−C∫40(2v+5)(3v−1)dv=212
No comments:
Post a Comment