Sunday, June 28, 2015

Single Variable Calculus, Chapter 5, 5.4, Section 5.4, Problem 24

Find the integrals 40(2v+5)(3v1)dv

(2v+5)(3v1)dv=(6v22v+15v5)dv(2v+5)(3v1)dv=(6v2+13v5)dv(2v+5)(3v1)dv=6v2dv+13vdv5dv(2v+5)(3v1)dv=6(v2+12+1)+13(v1+11+1)5(v0+10+1)+C(2v+5)(3v1)dv=6(v33)+13(v22)5v+C(2v+5)(3v1)dv=2v3+13v225v+C40(2v+5)(3v1)dv=2(4)3+13(4)225(4)+C[2(0)3+13(0)225(0)+C]40(2v+5)(3v1)dv=128+10420+C00+0C40(2v+5)(3v1)dv=212

No comments:

Post a Comment