Thursday, June 11, 2015

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 59

Give an example that limxa[f(x)g(x)] may exist even though neither limxaf(x) nor limxag(x) exists.

Suppose that f(x)x4x and g(x)=x22xx


limx0f(x) and limx0g(x) do not exists for the functions are not defined for  denominator But, limx0[f(x)g(x)]=limx0[(x4x)(x22xx)]=limx0[(x4)(x22x)(x)(x)]limx0[f(x)g(x)]=limx0[x34x22x2+8xx]limx0[f(x)g(x)]=limx0[\cancelx(x26x+8)\cancelx]=limx0(x26x+8)limx0[f(x)g(x)]=(0)26(0)+8=8limx0[f(x)g(x)]=8

No comments:

Post a Comment