Give an example that limx→a[f(x)g(x)] may exist even though neither limx→af(x) nor limx→ag(x) exists.
Suppose that f(x)x−4√x and g(x)=x2−2x√x
limx→0f(x) and limx→0g(x) do not exists for the functions are not defined for denominator But, limx→0[f(x)g(x)]=limx→0[(x−4√x)(x2−2x√x)]=limx→0[(x−4)(x2−2x)(√x)(√x)]limx→0[f(x)g(x)]=limx→0[x3−4x2−2x2+8xx]limx→0[f(x)g(x)]=limx→0[\cancelx(x2−6x+8)\cancelx]=limx→0(x2−6x+8)limx→0[f(x)g(x)]=(0)2−6(0)+8=8limx→0[f(x)g(x)]=8
No comments:
Post a Comment