Wednesday, June 24, 2015

Calculus and Its Applications, Chapter 1, 1.7, Section 1.7, Problem 42

Differentiate f(x)=(5x4)7(6x+1)3.



f(x)=(6x+1)3ddx(5x4)7(5x4)7ddx(6x+1)3[(6x+1)3]2f(x)=(6x+1)3(7)(5x4)6ddx(5x4)(5x4)7(3)(6x+1)2ddx(6x+1)(6x+1)6f(x)=(6x+1)3(7)(5x4)6(5)(5x4)7(3)(6x+1)2(6)(6x+1)6f(x)=35(6x+1)3(5x4)618(5x4)7(6x+1)2(6x+1)6f(x)=(6x+1)2(5x4)6[35(6x+1)18(5x4)](6x+1)6f(x)=(5x4)6(210x+3590x+72)(6x+1)4f(x)=(5x4)6(120x+107)(6x+1)4

No comments:

Post a Comment