The equation $\displaystyle 2x - \frac{x}{2} + \frac{x+1}{4} = 6x$ is either linear or equivalent to a linear equation. Solve the equation
$
\begin{equation}
\begin{aligned}
2x - \frac{x}{2} + \frac{x+1}{4} &= 6x && \text{Get the LCD of the left side}\\
\\
\frac{8x - 2x + x + 1}{4} &= 6x && \text{Simplify}\\
\\
\frac{7x+1}{4} &= 6x && \text{Group}\\
\\
\frac{7x}{4} + \frac{1}{4} &= 6x && \text{Combine like terms}\\
\\
\frac{7x}{4} - 6x &= \frac{-1}{4} && \text{Get the LCD of the left side}\\
\\
\frac{7x-24x}{4} &= \frac{-1}{4} && \text{Simplify}\\
\\
\frac{-17x}{4} &= \frac{-1}{4} && \text{Multiply both sides by -4}\\
\\
-\cancel{4}& \left[ \frac{-17x}{\cancel{4}}= \frac{-1}{4} \right] - \cancel{4} && \text{Simplify}\\
\\
17x &= 1 && \text{Divide both sides by 17}\\
\\
\frac{\cancel{17}x}{\cancel{17}} &= \frac{1}{17} && \text{Simplifty}\\
\\
x &= \frac{1}{17}
\end{aligned}
\end{equation}
$
No comments:
Post a Comment