Find the integral ∫214+u2u3du
∫214+u2u3du=∫214u3+u2u3du∫214+u2u3du=∫214u−3+1udu∫214+u2u3du=[4(u−3+1−3+1)+lnu]21∫214+u2u3du=[4(u−2−2)+lnu]21∫214+u2u3du=[−2u−2+lnu]21∫214+u2u3du=−2(2)2+ln(2)−[−2(−1)2+ln(1)]∫214+u2u3du=−24+ln(2)+2−0∫214+u2u3du=−12+2+ln(2)∫214+u2u3du=32+ln(2)
No comments:
Post a Comment