Evaluate the expression
$
\displaystyle
\sum^{8}_{k = 0}
\left(
\begin{array}{c}
8\\
k
\end{array}
\right)
\left(
\begin{array}{c}
8\\
8-k
\end{array}
\right)
$
$
\begin{equation}
\begin{aligned}
\sum^{8}_{k = 0}
\left(
\begin{array}{c}
8\\
k
\end{array}
\right)
\left(
\begin{array}{c}
8\\
8-k
\end{array}
\right)
&=
\left(
\begin{array}{c}
8\\
0
\end{array}
\right)
\left(
\begin{array}{c}
8\\
8-0
\end{array}
\right)
+
\left(
\begin{array}{c}
8\\
1
\end{array}
\right)
\left(
\begin{array}{c}
8\\
8-1
\end{array}
\right)
+
\left(
\begin{array}{c}
8\\
2
\end{array}
\right)
\left(
\begin{array}{c}
8\\
8-2
\end{array}
\right)
+
\left(
\begin{array}{c}
8\\
3
\end{array}
\right)
\left(
\begin{array}{c}
8\\
8-3
\end{array}
\right)
+
\left(
\begin{array}{c}
8\\
4
\end{array}
\right)
\left(
\begin{array}{c}
8\\
8-4
\end{array}
\right)
+
\left(
\begin{array}{c}
8\\
5
\end{array}
\right)
\left(
\begin{array}{c}
8\\
8-5
\end{array}
\right)
+
\left(
\begin{array}{c}
8\\
6
\end{array}
\right)
\left(
\begin{array}{c}
8\\
8-6
\end{array}
\right)
+
\left(
\begin{array}{c}
8\\
7
\end{array}
\right)
\left(
\begin{array}{c}
8\\
8-7
\end{array}
\right)
+
\left(
\begin{array}{c}
8\\
8
\end{array}
\right)
\left(
\begin{array}{c}
8\\
8-8
\end{array}
\right)
\end{aligned}
\end{equation}
$
Recall for the 8th row of the Pascal's Triangle...
$
\left(
\begin{array}{c}
8\\
0
\end{array}
\right)
= 1,
\left(
\begin{array}{c}
8\\
1
\end{array}
\right)
= 8,
\left(
\begin{array}{c}
8\\
2
\end{array}
\right)
= 28,
\left(
\begin{array}{c}
8\\
3
\end{array}
\right)
= 56,
\left(
\begin{array}{c}
8\\
4
\end{array}
\right)
= 70,
$
$
\left(
\begin{array}{c}
8\\
5
\end{array}
\right)
= 56,
\left(
\begin{array}{c}
8\\
6
\end{array}
\right)
= 28,
\left(
\begin{array}{c}
8\\
7
\end{array}
\right)
= 8,
\left(
\begin{array}{c}
8\\
8
\end{array}
\right)
= 1
$
Thus,
$
\begin{equation}
\begin{aligned}
\sum^{8}_{k = 0}
\left(
\begin{array}{c}
8\\
k
\end{array}
\right)
\left(
\begin{array}{c}
8\\
8-k
\end{array}
\right)
&=
(1)(1) + (8)(8) + (28)(28) + (56)(56) + (70)(70) + (56)(56) + (28)(28) + (8)(8) + (1)(1)\\
\\
&= 12870
\end{aligned}
\end{equation}
$
No comments:
Post a Comment