Differentiate g(x)=√xexg′(x)=ddx(√xex)g′(x)=√xddx(ex)+(ex)ddx(√x)g′(x)=(x)12ddx(ex)+(ex)ddx(x)12g′(x)=(x)12ex+(ex)(12)(x)−12g′(x)=x12ex+ex2√xg′(x)=√xex+ex2√xorg′(x)=√xex+ex2√x⋅√x√xg′(x)=√xex+√xex2x
No comments:
Post a Comment