Use Newton's Method to find all roots of x5=5x−2 correct to six decimal places.
We rewrite the equation in standard form
x5−5x+2=0
So we let f(x)=x5−5x+2, then
f′(x)=ddx(x5)−5ddx(x)+ddx(2)f′(x)=5x4−5
Using Approximation Formula
xn+1=xn−f(xn)f′(xn)xn+1=xn−x5n−5xn+25x4n−5
To find the initial approximation, we graph y=x5 and y=5x−2. Based from the graph, they have three intersection points in x-coordinate where they are very close to −1.6,0.4 and 1.4. So we have x1=−1.6,x1=0.4 and x1=1.4
So we get
x2=x1−x51−5x1+25x41−5x2=−1.6−(−1.6)5−5(−1.6)+25(−1.6)4−5x2=0.4−(0.4)5−5(0.4)+25(0.4)4−5x2=1.4−(1.4)5−5(1.4)+25(1.4)4−5x2≈−1.582506x2≈0.402102x2≈1.373378x3=−1.582506−f(−1.582506)f′(−1.582506)x3=0.402102−f(0.402102)f′(0.402102)x3=1.373378−f(1.373378)f′(1.373378)x3≈−1.582036x3≈0.402102x3≈1.371886x4=−1.582036−f(−1.582036)f′(−1.582036)x4=1.371886−f(1.371886)f′(1.371886)x4≈−1.582036x≈1.371882x5=1.371882−f(1.371882)f′(1.371882)x5≈1.371882
Therefore, the roots are x≈−1.582036,x≈0.402102 and x≈1.371882
No comments:
Post a Comment