How fast is the diameter decreasing when the diameter is 10cm?
a.) State the quantities given in the problem.
b.) State the unknown.
c.) Illustrate a picture of the situation for any time $t$.
d.) Write an expression that relates the quantities.
e.) Solve the problem
a.) Given: $\displaystyle \frac{dA}{dt} = -1 cm^2 / min$, rate of change of the surface area of snowball.
b.) Unknown: $\displaystyle \frac{d(d)}{dt}$ when $d = 10cm$, the rate at which the diameter changes with respect to time
c.)
d.) Let the snowball be a perfect sphere, its surface area is
$A = 4 \pi r^2$ where $r$ is the radius of the sphere
but we are given in terms of its diameter so we make radius in terms of diameter
$
\begin{equation}
\begin{aligned}
d =& 2r ; r = \frac{d}{2}
\\
\\
A =& 4 \pi \left( \frac{d}{2} \right)^2 = \frac{4 \pi d^2}{4} = \pi d^2
\\
\\
A =& \pi d^2
\\
\\
\frac{dA}{dt} =& \pi \cdot \frac{d}{d(d)} (d^2) \frac{d(d)}{dt}
\\
\\
\frac{dA}{dt} =& \pi \cdot 2d \left( \frac{d(d)}{dt} \right)
\\
\\
\frac{dA}{dt} =& 2 \pi d \left( \frac{d(d)}{dt } \right)
\\
\\
-1 =& 2 \pi (10) \left( \frac{d(d)}{dt} \right)
\\
\\
& \boxed{\displaystyle \frac{d(d)}{dt} = \frac{-1}{20 \pi} cm/min, \text{ negative values means the diameter is decreasing } }
\end{aligned}
\end{equation}
$
No comments:
Post a Comment