Wednesday, January 21, 2015

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 70

If f is a differentiable function, find an expression for the derivative of the following functions:

a. ) y=x2f(x)b. ) y=f(x)x2c. ) y=x2f(x)d. ) y=1+xf(x)x



a.) y=x2f(x)y=x2ddx[f(x)]+f(x)ddx(x2)Using Product Ruley=x2f(x)+f(x)(2x)Simplifyy=x2f(x)+2xf(x)



b.) y=f(x)x2y=x2ddx[f(x)][f(x)ddx(x2)](x2)2Using Quotient Ruley=x2f(x)f(x)(2x)x4Factor xin the equationy=\cancelx[xf(x)2f(x)]\cancel(x)(x3)Simplify the equationy=xf(x)2f(x)x3



c.) y=x2f(x)y=f(x)ddx(x2)[x2ddxf(x)][f(x)]2Using Quotient Ruley=f(x)(2x)x2f(x)[f(x)]2Simplify the equationy=2xf(x)x2f(x)[f(x)]2



d.) y=1+xf(x)xy=(x)12ddx[1+xf(x)][(1+xf(x))ddx(x12)](x)2Using Quotient Ruley=(x)[0+xf(x)+f(x)(1)][1+xf(x)](12x)xSimplify the equationy=2x2f(x)+2xf(x)1+xf(x)2xxCombine like termsy=2x2f(x)+3xf(x)12xx

No comments:

Post a Comment