If f is a differentiable function, find an expression for the derivative of the following functions:
a. ) y=x2f(x)b. ) y=f(x)x2c. ) y=x2f(x)d. ) y=1+xf(x)√x
a.) y=x2f(x)y′=x2ddx[f(x)]+f(x)ddx(x2)Using Product Ruley′=x2f′(x)+f(x)(2x)Simplifyy′=x2f′(x)+2xf(x)
b.) y=f(x)x2y′=x2ddx[f(x)]−[f(x)ddx(x2)](x2)2Using Quotient Ruley′=x2f′(x)−f(x)(2x)x4Factor xin the equationy′=\cancelx[xf′(x)−2f(x)]\cancel(x)(x3)Simplify the equationy′=xf′(x)−2f(x)x3
c.) y=x2f(x)y′=f(x)ddx(x2)−[x2ddxf(x)][f(x)]2Using Quotient Ruley′=f(x)(2x)−x2f′(x)[f(x)]2Simplify the equationy′=2xf(x)−x2f′(x)[f(x)]2
d.) y=1+xf(x)√xy′=(x)12ddx[1+xf(x)]−[(1+xf(x))ddx(x12)](√x)2Using Quotient Ruley′=(√x)[0+xf′(x)+f(x)(1)]−[1+xf(x)](12√x)xSimplify the equationy′=2x2f′(x)+2xf(x)−1+xf(x)2x√xCombine like termsy′=2x2f′(x)+3xf(x)−12x√x
No comments:
Post a Comment