Determine the limit limx→3(2x+|x−3|), if it exists. If the limit does not exist, explain why.
The function contains an absolute value, therefore, we evaluate its left and right hand limit
For the right hand limitlimx→3+(2x+|x−3|)=limx→3+(2x+x−3)x=limx→3+(3x−3)x=3(3)−3x=6
For the left hand limitlimx→3−(2x+|x−3|)=limx→3−[2x−(x−3)]x=limx→3−(x+3)x=3+3x=6
The left and right hand limits are equal. Therefore, the limit exists and is equal to 6.
No comments:
Post a Comment