Solve the inequality 1|2x−3|≤5. Express the answer using interval notation.
1|2x−3|≤515≤|2x−3|Divide by 5 and multiply |2x−3| on each side
We have,
2x−3≥15and−(2x−3)≥15Divide each side by -12x−3≥15and2x−3≤−15Add 32x≥95and2x≤75Divide by 2x≥910andx≤710
The solution set is (−∞,710)⋃(910,∞)
No comments:
Post a Comment