Solve the inequality $\displaystyle \frac{1}{|2x-3|} \leq 5$. Express the answer using interval notation.
$
\begin{equation}
\begin{aligned}
\frac{1}{|2x-3|} &\leq 5\\
\\
\frac{1}{5} &\leq |2x -3| && \text{Divide by 5 and multiply } |2x-3|\text{ on each side}
\end{aligned}
\end{equation}
$
We have,
$
\begin{equation}
\begin{aligned}
2x -3 &\geq \frac{1}{5} && \text{and}& -(2x-3) &\geq \frac{1}{5} && \text{Divide each side by -1}\\
\\
2x -3 &\geq \frac{1}{5} && \text{and}& 2x -3 &\leq - \frac{1}{5} && \text{Add 3}\\
\\
2x &\geq \frac{9}{5} && \text{and} & 2x &\leq \frac{7}{5} && \text{Divide by 2}\\
\\
x &\geq \frac{9}{10} && \text{and} & x &\leq \frac{7}{10}
\end{aligned}
\end{equation}
$
The solution set is $\displaystyle \left(-\infty, \frac{7}{10} \right) \bigcup \left( \frac{9}{10}, \infty \right)$
No comments:
Post a Comment