Suppose that the function c(t)=k(e−at−e−bt)
a.) Show that limt→∞c(t)=0
limt→∞c(t)=limt→∞k(e−at−e−bt)=limt→∞k(1eat−1ebt)=k(1ea(∞)−1eb(∞))=k(1∞−1∞)=k(0−0)=0
b.) Find c′(t)
If c(t)=k(e−at−e−bt) thenc′(t)=k(e−at(−a)−e−bt(−b))c′(t)=k(be−bt−ae−at)
c.) When is the rate equal to 0?
When c′(t)=0
0=k(be−bt−ae−at)0=be−bt−ae−atae−at=be−btab=e−bte−atab=et(−b−(−a))ab=et(a−b)
If we take the natural logarithm, we have
ln(ab)=t(a−b)(lne)ln(ab)=t(a−b)(1)t=ln(ab)a−b
No comments:
Post a Comment