The graph function $h$ is given, state the value of each quantity, if it exists. If it does not exist, explain why.
$
\begin{equation}
\begin{aligned}
\text{a.) }& \lim\limits_{x \rightarrow -3^-} h(x) &
\text{b.) }& \lim\limits_{x \rightarrow -3^+} h(x)&
\text{c.) }& \lim\limits_{x \rightarrow -3} h(x)\\
\text{d.) }& h(-3) &
\text{e.) }& \lim\limits_{x \rightarrow 0^-} h(x) &
\text{f.) }& \lim\limits_{x \rightarrow 0^+} h(x) \\
\text{g.) }& \lim\limits_{x \rightarrow 0} h(x) &
\text{h.) }& h(0) &
\text{i.) }& \lim\limits_{x \rightarrow 2} h(x) \\
\text{j.) }& h(2)
\end{aligned}
\end{equation}
$
a. Referring to the graph given $\lim\limits_{x \rightarrow -3^-} h(x) = 4$
b. Referring to the graph given $\lim\limits_{x \rightarrow -3^+} h(x) = 4$
c. Referring to the graph given $\lim\limits_{x \rightarrow -3} h(x) = 4$
d. Referring to the graph given $h(-3)$ does not exist because the value at that point is not defined, it is an empty circle.
e. Referring to the graph given $\lim\limits_{x \rightarrow 0^-} h(x) = 1$
f. Referring to the graph given $\lim\limits_{x \rightarrow 0^+} h(x) = -1$
g. Referring to the graph given $\lim\limits_{x \rightarrow 0} h(x)$ does not exist because
$\lim\limits_{x \rightarrow 0^+} h(x)$ does not equal $\lim\limits_{x \rightarrow 0^-} h(x)$
h. Referring to the graph given $h(0) = 1$
i. Referring to the graph given $\lim\limits_{x \rightarrow 2} h(x) = 2$
j. Referring to the graph given $h(2)$ does not exist because the function is not defined at that point.
No comments:
Post a Comment