Solve each system 3x+y−z+2w=9x+y+2z−w=10x−y−z+3w=−2−x+y−z+w=−6 by expressing the solution in the form (x,y,z,w).
3x+y−z+2w=9Equation 12x+2y+4z−2w=202× Equation 2
5x+3y+3z−2w=29Add; New equation 2
−9x−3y+3z−6w=−27−3× Equation 12x−2y−2z+6w=−42× Equation 3
−7x−5y+z+6w=−31Add; New equation 3
3x+y−z+2w=9Equation 12x−2y+2z−2w=12−2× Equation 4
5x−y+z−2w=21Add; New Equation 4
5x+3y+3z=29Equation 221x+15y−3z=93−3× Equation 3
26x+18y−3z=122Add; New Equation 3
5x+3y+3z=29Equation 2−15x+3y−3z=−63−3× Equation 4
−10x+6y−3z=−34Add; New Equation 4
26x+18y=122Equation 330x−18y=102−3×Equation 4
56x−18y=224Addx=4Divide each side by 56
−10(4)+6y=−34Substitute x=4 in New Equation 4−40+6y=−34Multiply6y=6Add each side by 40y=1
5(4)−1+z=21Substitute x=4 and y=120−1+z=21Multiply19+z=21Combine like termsz=2Subtract each side by 19
3(4)+1−2+2w=9Substitute x=4,y=1 and z=2 in Equation 112+1−2+2w=9Multiply11+2w=9Combine like terms2w=−2Subtract each side by 11w=−1Divide each side by 2
The solution set is {(4,1,2,−1)}.
No comments:
Post a Comment