Monday, December 1, 2014

Intermediate Algebra, Chapter 4, 4.2, Section 4.2, Problem 44

Solve each system 3x+yz+2w=9x+y+2zw=10xyz+3w=2x+yz+w=6 by expressing the solution in the form (x,y,z,w).


3x+yz+2w=9Equation 12x+2y+4z2w=202× Equation 2




5x+3y+3z2w=29Add; New equation 2



9x3y+3z6w=273× Equation 12x2y2z+6w=42× Equation 3



7x5y+z+6w=31Add; New equation 3



3x+yz+2w=9Equation 12x2y+2z2w=122× Equation 4



5xy+z2w=21Add; New Equation 4



5x+3y+3z=29Equation 221x+15y3z=933× Equation 3



26x+18y3z=122Add; New Equation 3



5x+3y+3z=29Equation 215x+3y3z=633× Equation 4



10x+6y3z=34Add; New Equation 4



26x+18y=122Equation 330x18y=1023×Equation 4



56x18y=224Addx=4Divide each side by 56



10(4)+6y=34Substitute x=4 in New Equation 440+6y=34Multiply6y=6Add each side by 40y=1




5(4)1+z=21Substitute x=4 and y=1201+z=21Multiply19+z=21Combine like termsz=2Subtract each side by 19



3(4)+12+2w=9Substitute x=4,y=1 and z=2 in Equation 112+12+2w=9Multiply11+2w=9Combine like terms2w=2Subtract each side by 11w=1Divide each side by 2


The solution set is {(4,1,2,1)}.

No comments:

Post a Comment