Evaluate the expression $\displaystyle \log \frac{1}{\sqrt{1000}}$
$
\begin{equation}
\begin{aligned}
\log \frac{1}{\sqrt{1000}} =& \log 1 - \log \sqrt{1000}
&& \text{Law of Logarithms } \log_a \left( \frac{A}{B} \right) = \log_a A - \log_a B
\\
\\
\log \frac{1}{\sqrt{1000}} =& 0 - \log \sqrt{1000}
&& \text{Properties of Logarithms } \log_a 1 = 0
\\
\\
\log \frac{1}{\sqrt{1000}} =& \frac{-3}{2}
&& \text{Because } 10^{\frac{-3}{2}} = \frac{1}{\sqrt{1000}}
\end{aligned}
\end{equation}
$
No comments:
Post a Comment