Determine the integral ∫π3π6csc3xdx
Using Integration by parts
∫csc3xdx=∫udv
where
dv=csc2xdxv=−cotxu=cscxdu=−cscxcotxdx
then
∫csc3xdx=∫udv∫csc3xdx=uv−∫vdu∫csc3xdx=−cscxcotx−∫−cotx⋅−cscxcotxdx∫csc3xdx=−cscxcotx−∫cscxcot2xdxApply Trigonometric Identity csc2x=1+cot2x for cot2x∫csc3xdx=−cscxcotx−∫cscx(csc2x−1)dx∫csc3xdx=−cscxcotx−(∫(csc3x)−cscx)dx)∫csc3xdx=−cscxcotx−∫csc3xdx+∫cscxdxCombine like terms
∫csc3xdx+∫csc3xdx=−cscxcotx+∫cscxdx2∫csc3xdx=−cscxcotx+∫cscxdx∫csc3xdx=−cscxcotx+∫cscxdx2∫csc3xdx=−12cscxcotx+12∫cscxdx∫csc3xdx=−12cscxcotx+12(−ln(cscx+cotx))+c∫csc3xdx=−12cscxcotx−12ln(cscx+cotx)+c
Evaluating the limit from π6 to π3
∫π3π6csc3xdx=[−12cscxcotx−12ln(cscx+cotx)]π3π6∫π3π6csc3xdx=−12csc(π3)cot(π3)−12ln(csc(π3)+cot(π3))+12csc(π6)cot(π6)+12ln(csc(π6)+cot(π6))∫π3π6csc3xdx=−1\cancel2(\cancel2√33)(√33)−12ln(2√33+√33)+1\cancel2(\cancel2)(√3)+12ln(2+√3)∫π3π6csc3xdx=−39−12ln(\cancel3√3\cancel3)+√3+12ln(2+√3)∫π3π6csc3xdx=−13−12ln(√3)+√3+12ln(2+√3)
No comments:
Post a Comment