Saturday, November 22, 2014

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 26

Determine the integral π40sec4θtan4θdθ



π40sec4θtan4θdθ=π40sec2θsec2θtan4θdθApply Trigonometric Identity sec2θ=tan2θ+1 for sec2θπ40sec4θtan4θdθ=π40(tan2θ+1)tan4θsec2θdθπ40sec4θtan4θdθ=π40(tan6θ+tan4θ)sec2θdθ


Let u=tanθ, then du=sec2θdθ. When θ=0,u=0,θ=π4,u=1. Therefore,


π40(tan6θ+tan4θ)sec2θdθ=10(u6+u4)duπ40(tan6θ+tan4θ)sec2θdθ=[u6+16+1+u4+14+1]10π40(tan6θ+tan4θ)sec2θdθ=[u77+u55]10π40(tan6θ+tan4θ)sec2θdθ=(1)77+(1)55(0)77(0)55π40(tan6θ+tan4θ)sec2θdθ=17+15π40(tan6θ+tan4θ)sec2θdθ=5+735π40(tan6θ+tan4θ)sec2θdθ=1235

No comments:

Post a Comment