Determine the integral ∫π40sec4θtan4θdθ
∫π40sec4θtan4θdθ=∫π40sec2θsec2θtan4θdθApply Trigonometric Identity sec2θ=tan2θ+1 for sec2θ∫π40sec4θtan4θdθ=∫π40(tan2θ+1)tan4θsec2θdθ∫π40sec4θtan4θdθ=∫π40(tan6θ+tan4θ)sec2θdθ
Let u=tanθ, then du=sec2θdθ. When θ=0,u=0,θ=π4,u=1. Therefore,
∫π40(tan6θ+tan4θ)sec2θdθ=∫10(u6+u4)du∫π40(tan6θ+tan4θ)sec2θdθ=[u6+16+1+u4+14+1]10∫π40(tan6θ+tan4θ)sec2θdθ=[u77+u55]10∫π40(tan6θ+tan4θ)sec2θdθ=(1)77+(1)55−(0)77−(0)55∫π40(tan6θ+tan4θ)sec2θdθ=17+15∫π40(tan6θ+tan4θ)sec2θdθ=5+735∫π40(tan6θ+tan4θ)sec2θdθ=1235
No comments:
Post a Comment