Saturday, November 29, 2014

Single Variable Calculus, Chapter 4, 4.5, Section 4.5, Problem 22

Use the guidelines of curve sketching to sketch the curve. y=x2+xx

The guidelines of Curve Sketching
A. Domain.
We know that f(x) contains square root function that is defined only for positive values of x. Hence, x2+x0x(x+1)x0 or x1. Therefore, the domain is (,1][0,)

B. Intercepts.
Solving for y-intercept, when x=0,
y=02+00=0
Solving for x-intercept, when y=0

0=x2+xxx2+x=xx2+x=x2x=0



C. Symmetry.
The function is not symmetric to either y-axis or origin by using symmetry test.


D. Asymptotes.
The function has no vertical asymptotes
For the horizontal asymptotes

limx±(x2+xx)=limx±(x2+xx)(x2+x+xx2+x+x)(By multiplying the conjugate)=limx±x2+xx2x2+x+x=limx±xx2+x+x(by dividing to 1x)=limx±11+1x+1=12

Therefore, the horizontal asymptote is y=12

E. Intervals of Increase or Decrease.
If we take the derivative of f(x), By using Chain Rule,

y=12(x2+x)12(1x+1)1y=2x+12x2+x1

When y=0,
0=2x+12(x2+x)121
We don't have critical numbers.

So the intervals of increase or decrease are...

Intervalf(x)fx<1decreasing on (,1)x>0+increasing on (0,)



F. Local Maximum and Minimum Values.
We have no local maximum and minimum.

G. Concavity and Points of Inflection.

if f(x)=2x+12x2+x1, then by using Quotient Rule and Chain Rule,f(x)=(2x2+x)(2)(2x+1)(2(2x+12x2+x))(2x2+x)2f(x)=4x2+x(2x+1)2x2+x(2x2+x)2=4x2+4x4x24x1x2+x4(x2+x)f(x)=14(x2+)32


when f(x)=0
0=14(x2+x)32
f(x)=0 does not exist. Therefore, we don't have inflection point.
Thus, the concavity in the domain of f is...


Intervalf(x)Concavityx<1Downwardx>0Downward


H. Sketch the Graph.

No comments:

Post a Comment