Use the guidelines of curve sketching to sketch the curve. y=√x2+x−x
The guidelines of Curve Sketching
A. Domain.
We know that f(x) contains square root function that is defined only for positive values of x. Hence, x2+x≥0⟹x(x+1)⟹x≥0 or x≤−1. Therefore, the domain is (−∞,−1]⋃[0,∞)
B. Intercepts.
Solving for y-intercept, when x=0,
y=√02+0−0=0
Solving for x-intercept, when y=0
0=√x2+x−x√x2+x=xx2+x=x2x=0
C. Symmetry.
The function is not symmetric to either y-axis or origin by using symmetry test.
D. Asymptotes.
The function has no vertical asymptotes
For the horizontal asymptotes
limx→±∞(√x2+x−x)=limx→±∞(√x2+x−x)⋅(√x2+x+x√x2+x+x)⟸(By multiplying the conjugate)=limx→±∞x2+x−x2√x2+x+x=limx→±∞x√x2+x+x⟸(by dividing to 1x)=limx→±∞1√1+1x+1=12
Therefore, the horizontal asymptote is y=12
E. Intervals of Increase or Decrease.
If we take the derivative of f(x), By using Chain Rule,
y′=12(x2+x)−12(1x+1)−1y′=2x+12√x2+x−1
When y′=0,
0=2x+12(x2+x)12−1
We don't have critical numbers.
So the intervals of increase or decrease are...
Intervalf′(x)fx<−1−decreasing on (−∞,−1)x>0+increasing on (0,∞)
F. Local Maximum and Minimum Values.
We have no local maximum and minimum.
G. Concavity and Points of Inflection.
if f′(x)=2x+12√x2+x−1, then by using Quotient Rule and Chain Rule,f″(x)=(2√x2+x)(2)−(2x+1)(2(2x+12√x2+x))(2√x2+x)2f″(x)=4√x2+x−(2x+1)2√x2+x(2√x2+x)2=4x2+4x−4x2−4x−1√x2+x4(x2+x)f″(x)=−14(x2+)32
when f″(x)=0
0=−14(x2+x)32
f″(x)=0 does not exist. Therefore, we don't have inflection point.
Thus, the concavity in the domain of f is...
Intervalf″(x)Concavityx<−1−Downwardx>0−Downward
H. Sketch the Graph.
No comments:
Post a Comment