Find the limit $\displaystyle \lim\limits_{x \to \pi/4} \left( \frac{1 - \tan x}{\sin x - \cos x}\right)$
	
	$
	\begin{equation}
	\begin{aligned}
		\lim\limits_{x \to \pi/4} \left( \frac{1 - \tan x}{\sin x - \cos x}\right) &= \lim\limits_{x \to \pi/4} \left( \frac{1-\frac{\sin x}{\cos x}}{\sin x - \cos x}\right)\\
		\\
		&= \lim\limits_{x \to \pi/4}  \frac{\cos x - \sin x}{\sin x - \cos x} \left( \frac{1}{\cos x} \right)\\
		\\
		&= \lim\limits_{x \to \pi/4} \frac{-\cancel{(\sin x - \cos x)}}{\cancel{(\sin x - \cos x)}} \left( \frac{1}{\cos x}\right)\\
		\\
		& = \lim\limits_{x \to \pi/4}  \frac{-1}{\cos x}\\
        \\
        & = \frac{-1}{\cos \frac{\pi}{4}}\\
		\\
		& = \frac{-1}{\frac{\sqrt{2}}{2}} = \frac{-2}{\sqrt{2}} && \text{(By rationalizing the denominator)}\\
        \\
        & = \frac{-2}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}\\
		\\
		& = \frac{-\cancel{2}\sqrt{2}}{\cancel{2}} \\
        \\
        & = - \sqrt{2}
	\end{aligned}
	\end{equation}
	$
No comments:
Post a Comment