a.) Illustrate the graph of f(x)=√6−x
b.) Sketch the graph of f′ using the graph from part (a)
c.) Find f′(x) using the definition of a derivative. State the domains of f and f′.
Using the definition of derivative
f′(x)=limh→0f(t+h)=f(t)hf′(x)=limh→0√6−(x+h)−√6−xhSubstitute f(x+h) and f(x)f′(x)=limh→0√6−x−h−√6−xh⋅√6−x−h+√6−x√6−x−h+√6−xMultiply both numerator and denominator by (√6−x−h+√6−x)f′(x)=limh→06−x−h−\cancel√(6−x−h)+(6−x)+\cancel√(6−x−h)+(6−x)−(6−x)h(√6−x−h+√6−x)Combine like termsf′(x)=limh→0\cancel6−\cancelx−h−\cancel6+\cancelxh(√6−x−h+√6−x)f′(x)=limh→0−\cancelh\cancelh(√6−x−h+√6−x)Cancel out like termsf′(x)=limh→0(−1√6−x−h+√6−x)=−1√6−x−0+√6−x=−1√6−x+√6−xEvaluate the limitf′(x)=−12√6−x
Both f(x) and f′(x) are root functions that are continuous for every positive values of x. However, the square root is placed in the denominator of f′(x) making the function defined only for 6−x>0.
For f(x)For f′(x)6−x≥06−x>0x≤6x<6
Therefore, the domain of f(x) is (−∞,6] while the domain of f′(x) is (−∞,6)
d.) Graph f′ and compare with your sketch in part (b)
No comments:
Post a Comment