(a) Estimate the value of lim by using the graph of f(x)
Based on the graph, the limit of f(x) seems to have a value of 0.29 as x approaches 0.
(b) Guess the limit the limit by using a table of values of f(x)
\begin{array}{|c|c|c|c|c|} \hline\\ x & 0.01 & 0.02 & 0.03 & 0.04 \\ \hline f(x) & 0.2884 & 0.2882 & 0.2879 & 0.2877\\ \hline \end{array}
Based on the values from the table, the limit of the function seems to have a value of 0.29 as x approaches to 0.
(c) Find the exact value of the limit using the limit laws.
\begin{equation} \begin{aligned} & \lim\limits_{x \to 0} \frac{\sqrt{3 + x} - \sqrt{3}}{x} \cdot \frac{\sqrt{3 + x} + \sqrt{3}} {\sqrt{3 + x} + \sqrt{3}} = \lim \limits_{x \to 0} \frac{3 + x - 3}{ x( \sqrt{3 + x} + \sqrt{3} ) } && \text{ Simplify the equation by multiplying both numerator and denominator by } \sqrt{3 + x} + \sqrt{3} \\ &\lim \limits_{x \to 0} \frac{1}{\sqrt{3 + x} + \sqrt{3}} = \frac{\lim \limits_{x \to 0} 1 }{\lim \limits_{x \to 0} \sqrt{3 + x} + \lim \limits_{x \to 0} \sqrt{3}} && \text{ Quotient and root law.} \\ & \lim \limits_{x \to 0}\frac{1}{\sqrt{3 + x} + \sqrt{3}} = \frac{1}{\sqrt{\lim \limits_{x \to 0}(3 + x)} + \sqrt{3}} && \text{ Constant and root law.}\\ & \lim \limits_{x \to 0} \frac{1}{\sqrt{3 + x} + \sqrt{3}} = \frac{1 }{\sqrt{3 + 0} + \sqrt{3}} && \text{ Sum, constant and special limit law.}\\ \end{aligned} \end{equation}\\ \boxed{\displaystyle \lim \limits_{x \to 0} \frac{1}{\sqrt{3 + x} + \sqrt{3}} = \frac{1}{2 \sqrt{3}}}
No comments:
Post a Comment