Evaluate ∫94lny√ydy by using Integration by parts.
If we let u=lny and dv=dy√y,then
du=1ydy and v=∫dy√y=y−12+1−12+1=2√y
So,
∫94lny√ydy=uv−∫vdu=2√ylny−∫2√ydyy=2√ylny−∫2y(12−1)dy=2√ylny−2∫y−12dy=2√ylny−2(2√y)=[2√y(lny−2)]94=[2√9(ln(9)−2)]−[2√4(ln4−2)]=6ln9−12−4ln4+8=6ln9−4ln4−4=ln96−ln44−4=ln(9644)−4=ln(531441256)−4
No comments:
Post a Comment