For each system, $
\begin{equation}
\begin{aligned}
6x + y =& 5 \\
-x + y =& -9
\end{aligned}
\end{equation}
$
(a) Solve by elimination or substitution method.
Using Elimination Method
$
\begin{equation}
\begin{aligned}
6x + y =& 5 && \\
x - y =& 9 && -1 \times \text{ Equation 2} \\
\hline
\end{aligned}
\end{equation}
$
$
\begin{equation}
\begin{aligned}
7x \phantom{+y} =& 14
&& \text{Add}
\\
x =& 2
&& \text{Divide each side by $7$}
\end{aligned}
\end{equation}
$
$
\begin{equation}
\begin{aligned}
6(2) + y =& 5
&& \text{Substitute $x = 2$ in Equation 1}
\\
12 + y =& 5
&& \text{Multiply}
\\
y =& -7
&& \text{Subtract each side by $12$}
\end{aligned}
\end{equation}
$
(b) Graph then solve each equation for $y$ first.
Equation 1
$
\begin{equation}
\begin{aligned}
& 6x + y = 5
&& \text{Given equation}
\\
& y = -6x + 5
&& \text{Subtract each side by $6x$}
\end{aligned}
\end{equation}
$
Equation 2
$
\begin{equation}
\begin{aligned}
-x + y =& -9
&& \text{Given equation}
\\
y =& x - 9
&& \text{Add each side by $x$}
\end{aligned}
\end{equation}
$
No comments:
Post a Comment