What is the area of the largest rectangle in the first quadrant with two sides on the axes and one vertex on the curve $y = e^{-x}$.
$\displaystyle A = xy = xe^{-x} = \frac{x}{e^x}$
If we want to maximize the area we set $A'(x) = 0$ and solve for the dimensions of the box. So,
$
\begin{equation}
\begin{aligned}
\text{If } A =& \frac{x}{e^x}, \text{ then by Quotient Rule}
\\
\\
A'(x) =& \frac{e^x (1) - (x) e^x}{(e^x)^2}
\\
\\
A'(x) =& \frac{e^x - xe^x}{(e^x)^2}
\\
\\
\text{If } A'(x) =& 0
\\
\\
0 =& e^x (1 - x)
\end{aligned}
\end{equation}
$
We have,
$1 - x = 0 $ and $ e^x = 0 $ (we don't have solution for this)
So,
$x = 1$
Therefore,
the largest area is $\displaystyle A = \frac{x}{e^x} = \frac{1}{e^1} = \frac{1}{e} $ Square units
No comments:
Post a Comment